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Abstract

In this paper we present a strategy for tensegrity structures deployment. The main idea is to use a certain set of

equilibria to which the undeployed and deployed configurations belong. In the state space this set is represented by an

equilibrium manifold. The deployment is conducted such that the deployment trajectory is close to this equilibrium

manifold.
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1. Introduction

Deployable structures are widely used for solar arrays, antennas, spacecraft as well as for retractable
roofs and shelters. Until recently these applications have been developed mostly by trial and error but the

current growing demand for deployable structures requires a more systematic approach aimed at devel-

oping new, generic solutions. As it is well known, serious problems in space activity may occur during the

deployment of the structures used. Classical deployable structures suffer from several deficiencies, such as

the existence of complicated rigid to rigid joints and the use of telescopic struts for deployment. One

promising solution to eliminate these problems is the use of tensegrity structures as deployable structures.

Tensegrity structures represent a class of space structures composed of a set of soft members and a set of

hard members. The soft members cannot carry other significant loads except for tensile ones. The repre-
sentative example is an elastic tendon which cannot be compressed for all practical purposes but can carry

significant tension. Because of this property we shall also refer to these members as tensile members. On the

other hand the hard members are characterized by the fact that they can carry any type of load. The

representative example is a bar which can carry significant and comparable tension, compression forces,

bending moments, etc.
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Nomenclature

b length of the base and top triangles sides

b̂b1;2;3 inertial reference frame unit vectors
d coefficient of friction at all joints

h overlap

k� stiffness of tendon * (* can be j, S, V, D)
l length of a bar

lj length of the jth tendon

l0 vector of tendons rest-lengths

l0j rest-length of tendon j
m mass of a bar
q vector of independent generalized coordinates

qe vector of independent generalized coordinates in a symmetrical prestressable configuration

s degree of polynomials

x state vector

xdðtÞ deployment path

xeðtÞ equilibrium path

t time

t̂t1;2;3 top reference frame unit vectors
AðqÞ equilibrium matrix

CðqÞ damping matrix

D length of a diagonal tendon in a symmetrical configuration

D0 rest-length of a diagonal tendon for the SVD tensegrity structure

Eb Young�s modulus of a bar

E� Young�s modulus of tendon *

F vector of external forces and torques

HðqÞ disturbance matrix
J transversal moment of inertia of a bar

J1;2;3 moments of inertia of the rigid top

MðqÞ inertia matrix

Mi friction torque at joint i
Mt mass of the top

Nt number of tendons

R exterior radius of a bar

P pretension coefficient
S length of a saddle tendon in a symmetrical configuration

S0 rest-length of a saddle tendon for the SVD tensegrity structure

V0 rest-length of a vertical tendon for the SVD tensegrity structure

X , Y , Z Cartesian inertial coordinates of the mass center of the top

T ðqÞ vector of tensions in the tendons

Tj tension in the jth tendon

Ud=u potential energy at the deployed/undeployed configuration

V length of a vertical tendon in a symmetrical configuration
a azimuth of bar A11B11 in a symmetrical configuration

au undeployed configuration azimuth
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ad deployed configuration azimuth

aij azimuth of bar AijBij

cb;t safety coefficients

d declination of a bar in a symmetrical configuration
du undeployed configuration declination

dd deployed configuration declination

dij declination of bar AijBij

�q; _qq tolerances

q density of a bar

w, /, h Euler angles of the top reference frame

r�max maximum stress allowed in tendon *

s normalized time
xr

i relative angular velocity vector at joint i
Td deployment time
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A structure composed of soft and hard elements as described above is a tensegrity structure if it has
the property of prestressability. This property consists of the structure�s ability to maintain an equilib-

rium shape with all tensile members in tension and in the absence of external forces or torques. Tensegrity

structures integrity is guaranteed by the tensile members in tension, hence their denomination, tenseg-

rity, an acronym of tension-integrity coined by Fuller. A perspective view of a tensegrity tower, composed

of 33 elastic tendons (soft members), 9 rigid bars, a rigid base, and a rigid top (hard members) is given

in Fig. 1.

It is apparent that these structures are capable of large displacement and can easily change their shape.

They can also be built without, or with very few, complicated bar to bar joints. They offer excellent op-
portunities for physically integrated structure and controller design, since the elastic components can carry

both the sensing and actuating functions. These structures are very promising deployable structures due to

packaging efficiency and ease of deployment, unlike systems with telescopic struts and complicated joints

(see Furuya, 1992). Their deployment can be accomplished by controlling the tendons, without involving

complicated telescopic struts.

Although the origins of tensegrity structures can be pin-pointed to 1921 (see Motro, 1996), the main

investigations have been carried out rather recently. Detailed geometrical studies were first reported by

Fuller (1975) and Pugh (1976). Approaches using mechanics were later developed being aimed at estab-
lishing the theoretical framework for the analysis and design of these structures. Calladine (1978), Motro

et al. (1986), Pellegrino and Calladine (1986), Sultan et al. (2001), made important contributions to the

general theory of these structures statics. Sultan et al. (2001), Murakami and Nishimura (2001a,b) and

Nishimura and Murakami (2001) published a series of results regarding analytical solutions of the statics

problem, while Hanaor (1988), Kebiche et al. (1999), Vassart and Motro (1999), developed numerical

methods of large generality. The field of tensegrity structures dynamics research was pioneered by Motro

et al. (1986). Significant theoretical advances have been later made by Murakami (2001) and Sultan et al.

(2002a,b) who developed nonlinear and linearized dynamics models for tensegrity structures. Using simpler
models, Connelly and Whiteley (1996) proved some important results regarding the stability and rigidity of

equilibrium configurations, while Oppenheim and Williams (2001a,b) discovered interesting properties of

their vibration and damping characteristics. Control design studies have been pioneered by Skelton and

Sultan (1997), followed by important contributions by Sultan and Skelton (1997), Djouadi et al. (1998), and

Kanchanasaratool and Williamson (2002). Applications of tensegrity structures have been proposed,
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Fig. 1. Three stage tensegrity tower.
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ranging from tensegrity domes (Hanaor, 1992; Wang and Liu, 1996), antennas (Djouadi et al., 1998), to

tensegrity sensors (Sultan and Skelton, 1998a), space telescopes (Sultan et al., 1999), flight simulators

(Sultan et al., 2000).

Of crucial importance for future applications of tensegrity structures is the development of strategies for

their deployment. Furuya (1992) examined these structures deployment, but only at the conceptual level.
Sultan and Skelton (1998b) analyzed the deployment of tensegrity structures using tendon control and

proposed a procedure which will be expanded upon in this article. In another article Sultan et al. (2002a)

proposed tendon controlled reconfiguration procedures aimed at changing the equilibrium configuration of

a tensegrity structure while preserving its height. Tibert and Pellegrino (2002) developed a procedure which

uses telescopic struts for deployment of a tensegrity antenna.

The deployment strategy presented in this paper is a generic solution, based on the existence of a set of

equilibrium configurations to which the undeployed and deployed configurations belong. In the state

space this set is represented by an equilibrium manifold. The deployment process is conducted such that
its state space trajectory is close to the equilibrium manifold. Additional optimization constraints (such as

minimum deployment time or minimum energy) can be imposed and the necessary control law solved for.

Technologically, the deployment process can be conducted using either tendon control or telescopic

struts.

The paper is organized as follows. First, the deployment strategy is presented. Then, for a particular

class of tensegrity structures, some results regarding their dynamics and statics are reviewed. Next, the first

example of the application of the deployment strategy is given: the time optimal deployment problem is



C. Sultan, R. Skelton / International Journal of Solids and Structures 40 (2003) 4637–4657 4641
formulated and numerically solved for a certain tensegrity structure. Finally, the second example is given,

presenting the deployment of a more complex tensegrity structure using smooth controls.
2. Deployment strategy

We assume that the structure yields an initial equilibrium configuration with all tendons in tension. We

want to change this configuration into another final equilibrium one, such that certain constraints are met

(e.g. the tendons are always in tension throughout the motion, the rigid bodies do not collide, etc.). The

process through which the structure changes from one equilibrium configuration into another is referred to

as deployment.

In the following we present a deployment strategy based on the assumption that an equilibrium manifold

to which the undeployed and deployed configurations belong has been identified. The main idea is to

conduct the deployment such that the deployment path is close enough to this manifold. The advantage in

doing so is that, due to the proximity of the deployment path to this manifold, the successive configurations

the structure passes through are not much different from the equilibrium ones. If these equilibrium con-

figurations have certain properties (for example, all tendons are in tension and sufficient clearance between

the isolated rigid bodies exists), then the deployment can be conducted slow enough such that the inter-

mediate configurations the structure passes through have the same properties.

One way to ensure that the deployment path is close to the equilibrium manifold is by letting the control
variables take values only in the set of the equilibrium manifold controls. That is to say the controls are

allowed to take only values which correspond to equilibria which belong to the equilibrium manifold. If the

change in control variables is smooth enough, then the system undergoes slow motions, remaining close to

this manifold. This procedure presents an important, practical, advantage: if the manifold consists only of

asymptotically stable equilibria the procedure is fault tolerant in the following sense. If for certain reasons

(e.g. power failure) the controls are frozen to some intermediate values, the structure will oscillate and settle

down to an equilibrium configuration which belongs to the equilibrium manifold and from which the

deployment process can be later restarted.
The control variables can be, for example, the length of the struts (in the case of telescopic struts

control), the rest-lengths of the tendons (in the case of tendon control) or a combination of both.

An important step in this deployment strategy is the discovery of the equilibrium manifold. For this

purpose a procedure which combines both numerical and symbolic computation, has been proposed and

successfully applied to several tensegrity structures by Sultan (1999).
3. Tensegrity structures dynamics

In the following we summarize some results on the dynamics of a certain class of tensegrity structures.

Consider a tensegrity structure composed of elastic and massless tendons and rigid bodies. For math-

ematical modeling it is assumed that all constraints on the system are holonomic, scleronomic and bilateral,

the external constraint forces are workless, the forces exerted by other force fields are neglected, external

forces and torques are applied only to the rigid elements of the structure, the structure is affected at most by

linear kinetic friction at the rigid to rigid joints and linear kinetic damping in the tendons (linear kinetic

friction means that the friction torques/forces are proportional to the relative angular/linear velocities
between the members in contact, and linear kinetic damping means that the damping force introduced by a

tendon is proportional to the time derivative of its elongation). The equations of motion are (see Sultan

et al., 2002a):
MðqÞ€qqþ cðq; _qqÞ þ AðqÞT ðqÞ þ CðqÞ _qqþ HðqÞF ¼ 0; ð1Þ
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where

• q ¼ ½q1 q2 � � � qN �T is the vector of independent generalized coordinates used to describe the structure�s
configuration, and N is the number of degrees of freedom.

• MðqÞ is the inertia matrix.

• cðq; _qqÞ is a vector of quadratic functions in _qq, whose components can be expressed as:
ci ¼
XN
j¼1

XN
n¼1

oMij

oqn

�
	 1

2

oMjn

oqi

�
_qqj _qqn; i ¼ 1; . . . ;N : ð2Þ
• AðqÞT ðqÞ is the vector of elastic generalized forces where A½n; j� ¼ olj=oqn, n ¼ 1; . . . ;N , j ¼ 1; . . . ;Nt, Nt

being the number of tendons, lj the length of tendon j, and T ðqÞ the vector of tendons tensions.
• CðqÞ _qq is a vector of generalized damping forces where CðqÞ is the damping matrix (this form of gener-

alized damping forces is valid only for the kinetic damping assumption).

• HðqÞF is a vector of generalized forces due to external forces and torques where F is the vector of ex-

ternal forces and torques applied to the rigid bodies and HðqÞ is the disturbance matrix.

These equations have been used to develop reconfiguration procedures (Sultan et al., 2002a) and to derive
the linearized equations of motion of tensegrity structures (Sultan et al., 2002b).

The second order ordinary differential equations of motion, Eq. (1), can be cast in first order form if we

introduce the state vector x ¼ ½qT _qqT�T:

_xx ¼ f ðxÞ; ð3Þ
where f ðxÞ is given by
f ðxÞ ¼ ½ _qqT ð	M	1ðqÞðcðq; _qqÞ þ AðqÞT ðqÞ þ CðqÞ _qqþ HðqÞF ÞÞT�T: ð4Þ

This first order form will be later used in this article.
4. Tensegrity structures statics

Because the deployment process consists of transforming one equilibrium configuration of the structure

into another, in the following we shall summarize some results on tensegrity structures statics from Sultan

et al. (2001).

Equilibrium configurations are mathematically characterized by the condition that in the equations of

motion, Eq. (1), all time derivatives are zero. In order to avoid entanglement we also require that the

tendons are in tension:
AðqÞT ðqÞ þ HðqÞF ¼ 0; Tj > 0; j ¼ 1; . . . ;Nt; ð5Þ

where Tj is the tension in tendon j. Of special interest are particular equilibria defined by the additional

condition that no external forces or torques act on the structure (F ¼ 0). These equilibria are called

prestressable configurations and are mathematically characterized by the prestressability conditions:
AðqÞT ðqÞ ¼ 0; Tj > 0; j ¼ 1; . . . ;Nt: ð6Þ

Sultan (1999) developed a methodology to investigate the prestressability conditions (6). The methodology

is aimed at discovering a set of prestressable configurations which can (eventually) be represented by an

equilibrium manifold in the state space. The methodology can also be used for equilibrium configurations

which occur under nonzero external forces or torques (F 6¼ 0). Sultan et al. (2001) analyzed various

tensegrity structures for prestressability using this methodology and discovered equilibrium manifolds.
Some of these manifolds will be used in this article for our deployment strategy.
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5. Deployment of a two stage SVD tensegrity structure

In the following we give an example of the application of the above strategy to the time optimal de-

ployment of a two stage SVD tensegrity structure. This type of structure has been extensively studied by
Sultan et al. (2001, 2002a,b). A prestressable equilibrium manifold to which collapsed configurations (of

almost zero height) and erected ones of various heights belong has been discovered (see Sultan et al., 2001).

This manifold will be used in our deployment strategy.
5.1. Structure’s description

A perspective view of a two stage SVD tensegrity structure is given in Fig. 2. Its components are: a

triangular base (A11A21A31), a triangular top (B12B22B32), 3 bars attached through ball and socket joints to

the base (Ai1Bi1), 3 bars similarly attached to the rigid top (Ai2Bi2), and 18 tendons which connect the end

points of the bars. Stage j is composed of bars AijBij, i ¼ 1; 2; 3. The tendons are classified as saddle tendons
(Bi1Aj2), vertical tendons (Aj1Bi1 and Aj2Bi2), and diagonal tendons (Aj1Ai2 and Bj1Bi2). The assumptions
made for mathematical modeling are: the tendons are massless, not damped (i.e. not affected by damping),

and linear elastic, the base and the top are rigid bodies, the bars are rigid, axially symmetric, for each bar

the rotational degree of freedom around its longitudinal axis of symmetry is neglected, the external force

fields (e.g. gravity) are neglected, friction torques which are proportional to the relative angular velocity

between the bars and the base or top act at the joints between the top or base with the bars (Mi ¼ dxr
i where

Mi, xr
i are the friction torque and relative angular velocity at joint i, respectively, and d < 0 is the friction

coefficient). Hence Eq. (1) applies.

The inertial reference frame, b̂b1, b̂b2, b̂b3, is a dextral set of unit vectors, whose center coincides with the
geometric center of the triangle A11A21A31. Axis b̂b3 is orthogonal to the plane A11A21A31 pointing upward,
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Fig. 2. Two stage SVD tensegrity structure.
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while b̂b1 is parallel to A11A31. The dextral reference frame attached to the rigid top is t̂t1, t̂t2, t̂t3. Its center
coincides with the geometric center of the triangle B12B22B32 while t̂t3 is orthogonal to the plane B12B22B32

pointing upward and t̂t1 is parallel to B12B32. For simplicity it is assumed that this system is central principal

for the rigid top (i.e. its center coincides with the center of mass and its axes coincide with the principal axes
of the rigid top).

The 18 independent generalized coordinates used to describe this system�s configuration are: w, /, h, the
Euler angles for a 3-1-2 sequence to characterize top�s reference frame orientation in the inertial frame, X ,
Y , Z, the Cartesian inertial coordinates of the mass center of the top, dij, aij, the declination and the azimuth

of bar AijBij, measured with respect to the inertial reference frame (Fig. 2). Hence the vector of independent

generalized coordinates is:
q ¼ d11 a11 d21 a21 d31 a31 d12 a12 d22 a22 d32 a32 w / h X Y Z½ �T: ð7Þ
5.2. Equilibrium manifold

Consider a two stage SVD tensegrity structure with the following particularities: all bars are identical (of

length l and mass m) and the top and base triangles are equal, equilateral triangles of side b. For simplicity
we also assume that all saddle tendons are identical (of rest-length S0 and stiffness kS), all vertical tendons
are identical (of rest-length V0 and stiffness kV), all diagonal tendons are identical (of rest-length D0 and

stiffness kD). Here the stiffness is defined as the product between the cross-sectional area and the longitu-

dinal elasticity modulus of a tendon.

In Sultan et al. (2001) a particular set of configurations, called symmetrical configurations, was defined as
follows: all bars have the same declination, d, the vertical projections of Ai2, Bi1, i ¼ 1; 2; 3 onto the base

make a regular hexagon, planes A11A21A31 and A12A22A32 are parallel. Three quantities are used to pa-

rameterize these configurations: a, the azimuth of A11B11, d, and h, the overlap, defined as the distance

between planes B11B21B31 and A12A22A32 and considered positive if A12A22A32 is closer to A11A21A31 than

B11B21B31.

At such a configuration the lengths of the saddle, vertical, and diagonal tendons are given by
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

3
þ l2 sin2ðdÞ 	 2ffiffiffi

3
p lb sinðdÞ cos a 	 p

6

� �s
; ð8Þ

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ b2 	 2lb sinðdÞ sin a þ p

6

� �r
; ð9Þ

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ b2

3
þ h2 	 2lh cosðdÞ 	 2ffiffiffi

3
p lb sinðdÞ sinðaÞ

s
; ð10Þ
respectively.

The prestressability problem (conditions (6)) for these configurations was solved by Sultan et al. (2001)

yielding:
qe ¼ d a d aþ 4p
3

d aþ 2p
3

d aþ 2p
3

d a d aþ 4p
3

5p
3

0 0 0 0 2l cosðdÞ 	 h

	 
T
;

ð11Þ
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where
h ¼

cosðdÞ
2 sinðdÞ cos a þ p

6

� � 	 bffiffiffi
3

p þ p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

3
	 3p2

r !
if a 6¼ p

3
;

l cosðdÞ
2

if a ¼ p
3
;

8>>><>>>: ð12Þ
with p ¼ l sinðdÞ cosða þ p=6Þ. These solutions exist if and only if a and d satisfy the following conditions:
p
6
< a <

p
2
; 0 < d <

p
2
;

l sinðdÞ cos a
���� þ p

6

���� < b

2
ffiffiffi
3

p and sin a
�

þ p
6

�
<
3l sinðdÞ

2b
: ð13Þ
Sultan et al. (2001) showed that at any of these symmetrical prestressable configurations the state of stress

is uniquely determined up to an arbitrary multiplicative positive scalar, P , called the pretension coefficient.

In the (a; d; h) space the set of these prestressable configurations is defined by
bUU ¼ fða; d; hÞ with ða; dÞ satisfying conditions ð13Þ and h given by Eq: ð12Þg; ð14Þ

and is represented by an equilibrium surface. In the state space this surface corresponds to the equilibrium

manifold which will be used in our deployment strategy.

The necessary rest-lengths of the saddle, vertical, and diagonal tendons which guarantee a symmetrical

prestressable configuration (characterized by a, d) and a prescribed pretension (P ) are given by:
S0 ¼
kSS

T0SP þ kS
; V0 ¼

kVV
T0VP þ kV

; D0 ¼
kDD

T0DP þ kD
: ð15Þ
Formulas for T0S , T0V , T0D in terms of a and d are given in Sultan et al. (2001).

Using the linearized models of tensegrity structures dynamics, Sultan et al. (2002b) ascertained that these

symmetrical prestressable configurations are asymptotically stable.

In the following we shall assume that the controls are the tendons rest-lengths. The equilibrium manifold

control set it is then characterized by Eqs. (15). This is the set in which the controls will be allowed to take

values during deployment.

5.3. Tendon control deployment

The deployment task is to erect the structure from an almost flat configuration to the nominal one,

corresponding to the operating conditions. We assume that both the undeployed and the deployed con-

figurations are symmetrical prestressable configurations as defined before, characterized by (au, du) and (ad,
dd) respectively. The deployment process has to be performed such that all tendons are maintained in
tension and the bars do not touch each other. No external forces or torques act on the structure (F ¼ 0).

In this example tendon control will be used to conduct the deployment. This procedure requires mod-

ification of the active lengths of the tendons. This task can be accomplished by motors attached, for ex-

ample, at the end of the bars (or, if the bars are hollow, inside them). These motors work in the following

way. For example the motor pulls a tendon and rolls it over a small wheel in such a way that its active

length is shortened: the part of the tendon which is rolled over the motor wheel no longer contributes to the

tendon tension. Hence this control procedure works as if the rest-length of the tendon would be shortened.

Similarly, when the motor changes its sense of rotation, a portion of the inactive tendon becomes active,
carrying force; hence the rest-length of the tendon increases. We call this procedure of tendon control, rest-

length control.
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5.4. Time optimal control

In the following we shall analyze the time optimal deployment control problem.

Since in this scenario we assume that the controls are the tendons rest-lengths, l0, we can write the
mathematical problem to be solved as
min
l0ðtÞ

Td

s:t: _xx ¼ f ðx; l0ðtÞÞ; xð0Þ ¼ ½qTeu 0
T�T; xðTdÞ ¼ ½qTed 0

T�T;
l0ð0Þ ¼ l0u ; l0ðTdÞ ¼ l0d ; giðx; l0Þ < 0; i ¼ 1; . . . ;Nc; l0ðtÞ 2 L0:

ð16Þ
The subscripts u and d refer to the undeployed and deployed configurations, respectively, l0 is the vector of
tendons rest-lengths, Td is the deployment time, and gi, i ¼ 1; . . . ;Nc, account for all of the inequality

constraints (e.g. the distances between bars should be greater than a minimum value, tendons must be in

tension, the forces experienced by all the elements must be less than the maximum admissible values). The
control region, L0, is the set in which the controls lie (e.g. a parallelepiped in the control space, situated in

the first quadrant).

Time optimal control problems have been extensively treated in the literature. In the case of inequality

path constraints the control law is in the class of piecewise continuous functions (Bryson and Ho, 1985).

The solution is provided by the maximum principle (Pontryagin et al., 1962) and it usually consists of

discontinuous control laws. For large systems of differential equations, like those used to describe struc-

ture�s dynamics, the resulting two point boundary value problem is difficult to solve.

The problem can be simplified if we consider motions close to the symmetrical prestressable configu-
rations class presented before. These configurations have some important advantages for our purpose:

closed form (analytical) solutions for the generalized coordinates are available (Eq. (11)) as well as for the

corresponding rest-lengths (Eqs. (15)), analytical expressions to describe the state of stress of the structure

are also given (see Sultan et al., 2001), the clearance condition is easily checked (the bars axes of symmetry

intersect only for a ¼ p=6), and all tendons are in tension. In the state space, this class is represented by a

manifold to which both the undeployed and deployed configurations belong. We shall conduct the de-

ployment such that its state space path is close enough to the equilibrium manifold by requiring that the

controls, l0, take values only in the symmetrical prestressable configurations manifold control set.
5.5. Numerical solution

The application of the previously proposed deployment strategy leads to the following methodology:

• 8t 2 ½0; Td� the rest-lengths are given by Eqs. (15) with a ¼ aeðtÞ, d ¼ deðtÞ. The control variables are now
aeðtÞ and deðtÞ and they represent functions of time which will be determined later.

• The initial and final conditions for the controls correspond to undeployed and deployed configurations
respectively: aeð0Þ ¼ au, deð0Þ ¼ du, aeðTdÞ ¼ ad, deðTdÞ ¼ dd.

• Let xdðtÞ ¼ ½qðtÞT _qqðtÞT�T denote the corresponding deployment path (the state space trajectory of the dy-

namical system of Eqs. (3) and (4), with the time variant rest-lengths as described before.

The detailed equations of motion for two stage SVD tensegrity structures can be found in Sultan (1999).

• Let xeðtÞ ¼ ½qeðtÞT 0T�T denote the equilibrium path corresponding to aeðtÞ, deðtÞ (qeðtÞ is given by Eq. (11)
with a ¼ aeðtÞ, d ¼ deðtÞ). In the (a; d; h) space the equilibrium path represents a curve on the equilibrium
surface, connecting the undeployed and deployed configurations.
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• The control law, (aeðtÞ; deðtÞ), has to be designed such that 8t 2 ½0; Td�, kqðtÞ 	 qeðtÞk < eq, k _qqðtÞk < e _qq.
Hence the deployment path can be made arbitrarily close to the equilibrium path by choosing the toler-

ances eq and e _qq small enough.

It is apparent that the closer the deployment path is to the equilibrium path (thus the smaller eq and e _qq
are) the longer the deployment process is. Thus, minimizing the deployment time appears as a natural

objective.

For simplicity we further assume that, for t 2 ½0; Td�, aeðtÞ and deðtÞ are polynomials of a certain degree.

This way the problem is transformed into a parameter optimization problem with inequality constraints,

the parameters to be solved for being the polynomials coefficients.

We also relax the terminal condition ðxðTdÞ ¼ ½qTed 0
T�TÞ on the account that, being asymptotically stable,

the deployed configuration will attract all neighboring solutions. Thus it is sufficient to get xðTdÞ close
enough to ½qTed 0

T�T and fix the control variables values to those corresponding to the deployed configu-

ration: aeðtP TdÞ ¼ ad, deðtP TdÞ ¼ dd.
After a change of coordinates to normalize time, t ¼ sTd, s 2 ½0; 1�, the mathematical statement of the

minimum time deployment problem becomes:
min
Td;pa;pd

Td

s:t: Td > 0 and 8s 2 ½0; 1� : kqðsÞ 	 qeðsÞk < eq; k _qqðsÞk < e _qq; ðaeðsÞ; deðsÞÞ 2 U ;
ð17Þ
where
deðsÞ ¼ pTd ss; aeðsÞ ¼ pTa ss; ss ¼ ½1s � � � ss�T;

deð0Þ ¼ du; deð1Þ ¼ dd; aeð0Þ ¼ au; aeð1Þ ¼ ad:
Here U is defined by conditions (13), pa and pd are vectors of aeðtÞ and deðtÞ polynomials coefficients,
whereas s is the degree of these polynomials, and xðsÞ ¼ ½qðsÞT _qqTðsÞ�T is the solution of:
dx
ds

¼ f ðx; l0ðaeðsÞ; deðsÞÞÞTd with the initial conditions x0 ¼ ½qTeu 0
T�T: ð18Þ
Thus a parameter constrained minimization problem has to be solved. The constraints, which have to be
met 8s 2 ½0; 1�, will be imposed only at the nodes of a solution grid of ½0; 1� and the corresponding solution

checked on a finer one (the test grid). The parameter constrained minimization problem which results can

be formally written as:
min
Td;pa;pd

Td

s:t: Td > 0 and giðTd; pa; pdÞ < 0; i ¼ 1; . . . ;Ng;
ð19Þ
where giðTd; pa; pdÞ < 0, i ¼ 1; . . . ;Ng, account for the inequality constraints imposed at the solution grid
points.

This problem has been numerically solved using an exact penalty function combined with the Nedler–

Meade method for optimization (see Sultan, 1999, for details).

5.6. Results

We shall next present some results obtained using the above procedure. We assume that the deployment
takes place at a fixed pretension. For this fixed pretension, P , the bars are designed for buckling as shown

by Sultan (1999) yielding:



Table

Minim

s=P

1

2
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mb ¼ qpl R2

0@ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4 	 4l2cbC

d
0P

p3Eb

s 1A: ð20Þ
Here mb is the mass of the bar designed to withstand buckling, cb is a safety coefficient, q is bar�s density, Eb

its Young�s modulus, R the exterior radius of the bar (assumed to be a pipe), Cd
0P is the compressive force

used for design.

Tendons are designed for maximum stress:
k� ¼
E�T d

0�
Pct

r�max
ð21Þ
where r�max is the maximum stress allowed in tendon * (* stands for S, V, D) and ct is a safety coefficient.
Because during deployment the structure takes configurations which are close to the equilibrium man-

ifold we choose the design forces, Cd
0P and T d

0�
P , respectively, as the maximum values of the compression

forces in bars and tensions in tendons over the set of all symmetrical prestressable configurations. Since P is

assumed constant during deployment, we have
Cd
0 ¼ max

ða;dÞ2U
ðC0Þ; T d

0�
¼ max

ða;dÞ2U
ðT0� Þ; ð22Þ
where U is defined by conditions (13) and formulas for C0 and T0� in terms of a and d can be found in Sultan
et al. (2001). Choosing high values for the safety coefficients cb and ct we can account for the additional

dynamical loads which occur.
The following geometric and material properties of the structure were considered:
l ¼ 0:4 m; b ¼ 0:27 m; R ¼ 0:01 m; Eb ¼ 7� 1010 N=m
2
; q ¼ 2800 kg=m3;

E� ¼ 14� 1010 N=m
2
; r�max ¼ 2:5� 109 N=m

2
: ð23Þ
Using the results of Sultan et al. (2001) we determined:
Cd
0 ¼ 0:67; T d

0S
¼ T d

0D
¼ 0:36; T d

0V
¼ 0:34: ð24Þ
The safety coefficients were considered cb ¼ ct ¼ 4.

The inertial properties of the structure (including the additional devices attached to bars such as electric

motors to control deployment) and damping coefficients were considered
m ¼ mb þ 0:4 kg; J ¼ ml2

12
þ 0:6 kgm2; Mt ¼ 1 kg; J1 ¼ 3 kgm2; J2 ¼ 4 kgm2;

J3 ¼ 5 kgm2; d ¼ 	0:9; ð25Þ
where J1, J2, J3 are the moments of inertia of the top with respect to t̂t1, t̂t2, t̂t3 respectively, Mt is the mass of

the top and J is the transversal moment of inertia of a bar.
We present in Table 1 the minimum deployment time obtained for linear (s ¼ 1) and quadratic (s ¼ 2)

control laws, aeðtÞ and deðtÞ. The tolerances were chosen eq ¼ 0:1, e _qq ¼ 0:2, the solution grid was uniform

with 30 points and the testing grid was twice as dense. The deployed and undeployed configurations were
1

um deployment time (s)

100 200 300 400 500

13.33 14.02 13.14 12.63 13.15

12.64 14.02 13.14 12.47 11.75
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au ¼ 69, du ¼ 85, ad ¼ 50, dd ¼ 55 (all in degrees). The corresponding height of the structure was 0.04 m

and 0.41 m respectively.

The quadratic laws are more performant than the linear ones (except for P ¼ 200 and P ¼ 300 when the

coefficients of the quadratic terms in aeðtÞ and deðtÞ were practically negligible). This is no surprise, since
the quadratic polynomials set contains the linear ones. It is expected that the performance increases with

the degree of the polynomials, s. However, it is desired to implement as simple as possible controls, e.g. low
degree polynomials.

We can compute the energy required to perform the deployment if we apply the energy transformation

law:
Table

Contro

s=P

1

2

W ¼ Ud 	 Uu þ K1 	 Td
X6
i¼1

Z 1

0

MT
i xr

i ds; ð26Þ
2

l energy (J)

100 200 300 400 500

0.1557 0.1398 0.1358 0.1374 0.1201

0.1089 0.0865 0.0852 0.0827 0.0810

Undeployed configuration  ( τ = 0) Intermediate configuration (τ =1/3)

A
21 A

31

A
12

A
22

A
11

A
32

B
11

B
B
31

B
12

B
22

B
32

Fig. 3. Deployment sequence for P ¼ 300, quadratic polynomials.
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where U� represents the elastic potential energy at the * configuration, K1 is the kinetic energy when de-

ployment is completed (at s ¼ 1) and Td
P6

i¼1
R 1
0
MT

i xr
i ds is the work of the friction torques. The results are

given in Table 2.
The energy required for deployment decreases with increasing pretension and polynomials degree (s). It

is important to note that, if W < 0, it means that energy is generated through the deployment process: the

potential energy at the undeployed configuration is converted in kinetic and potential energy, work against

the friction forces and reusable energy.

Fig. 3 gives the deployment sequence corresponding to P ¼ 300 and quadratic polynomials. The

Euclidean norms of the nondimensional errors variations (q̂q	 q̂qe and _̂qq_qq vs s) are shown in Figs. 4 and 5 (the
nondimensional generalized coordinates are obtained by dividing lengths––X , Y , Z––through l and angles

through 1 rad). Fig. 4 reveals that the deployment path is practically identical with the equilibrium path.
The difference is the nonzero velocity (see Fig. 5) which finally results in deployment. Fig. 6 shows how the
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

0

2

4

6

8

10 x 10

q 
- q

e
2

Fig. 4. Error between the deployment and equilibrium path.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

q.
2

Fig. 5. Nondimensional generalized velocities norm for the deployment path.
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Fig. 6. Rest-length variations during deployment.

Fig. 7. Equilibrium path and equilibrium surface.
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Fig. 8. Potential and kinetic energies variations during deployment.
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rest-lengths of the saddle (S0), vertical (V0), and diagonal (D0) tendons vary during deployment; after the

process is completed (for s > 1) they are fixed to the deployed configuration values. Fig. 7 shows the

equilibrium path. Finally, Fig. 8 gives the variations in potential and kinetic energies. We ascertain that

after the controls are fixed at the deployed configuration values the kinetic energy rapidly decays, indicating
stabilization at the deployed configuration.

The rapid oscillations in the initial and final stages of the deployment are due to the fact that the time

derivatives of the controls are not continuous at s ¼ 0 and s ¼ 1, hence the high frequency modes of the

structure are excited. This problem can easily be fixed by using more smooth controls as shown in the next

example.
6. Tensegrity tower deployment

In the following we present another application of the proposed deployment strategy to a tensegrity

tower. Sultan (1999) analyzed tensegrity towers with three to ten stages and discovered equilibrium man-

ifolds which can be used for deployment.
6.1. Tensegrity tower description

The tensegrity tower analyzed in this article is composed of three stages, each stage having three bars

(Fig. 1). The end points of a bar are labeled Aij and Bij, i ¼ 1; 2; 3, j ¼ 1; 2; 3. Stage number j is composed of
bars AijBij, i ¼ 1; 2; 3. The bars of the first stage are attached via ball and socket joints to a base, and the

bars of the third stage are attached via ball and socket joints to a top. The end points of the bars are
connected through a total of 33 tendons.

For mathematical modeling the same assumptions as for the two stage SVD structure analyzed before

have been made (see Sultan, 1999, for details). Two reference frames are introduced: the inertial and the top

reference frames, b̂b1, b̂b2, b̂b3, and t̂t1, t̂t2, t̂t3 respectively, defined as in the two stage SVD case. For simplicity we

assume that t̂t1, t̂t2, t̂t3 is a central principal reference frame for the top.

The independent generalized coordinates which describe the configuration of this system are:

• dij, aij, the declination and the azimuth of bar AijBij, defined as in the two stage SVD case.
• xi2, yi2, zi2, the inertial Cartesian coordinates of the mass center of bar Ai2Bi2.

• w, /, h, the Euler angles for a 3-1-2 sequence to characterize the orientation of the top reference frame

with respect to the inertial frame.

• X , Y , Z, the inertial Cartesian coordinates of the geometric center of B13B23B33.
6.2. Equilibrium manifold

Sultan (1999) discovered an equilibrium manifold consisting of symmetrical cylindrical prestressable

configurations. These configurations are characterized as follows. Triangles A11A21A31 and B13B23B33 are

congruent, equilateral triangles of side length b, all bars have equal length, l, and the same declination, d.
Bars A11B11, A22B22, A33B33, are parallel, bars A21B21, A32B32, A13B13 are parallel, bars A31B31, A12B12, A23B23

are parallel, all nodal points Aij, Bij, i ¼ 1; 2; 3, j ¼ 1; 2; 3, lie on the surface of a rectangular cylinder, the

projections onto the base of the jth saddle points, A3jþ1, B1j, B3j, A2jþ1, B2j, A1jþ1, make a regular hexagon,

planes A1jA2jA3j and A1jþ1A2jþ1A3jþ1, j ¼ 1; 2, are parallel, the distance between A1jþ1A2jþ1A3jþ1 and B1jB2jB3j

is the same for all j ¼ 1; 2, and it is called the overlap, h. The overlap is positive if B1jB2jB3j is closer to
A11A21A31 than A1jþ1A2jþ1A3jþ1.
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At a symmetrical cylindrical prestressable configuration there are six different tendons tensions. The

tendons which have the same tension are grouped as follows: group D1: A11A12, A21A22, A31A32, B12B13,

B22B23, B32B33, group V1: A11B21, A21B31, A31B11, A33B13, A13B23, A23B33, group S1: B11A12, B21A22, B31A32,

B12A13, B22A23, B32A33, group S0
1: B21A12, B31A22, B11A32, B22A13, B32A23, B12A33, group V2: A12B32, A22B12,

A32B22, group D2: A12A33, A22A13, A32A23, B11B32, B21B12, B31B22. For simplicity, in the following we assume

that the tendons in each group are identical, their rest-lengths being labeled as follows: group D1, D10, group

V1, V10, group S1, S10, group S0
1, S

0
10, group V2, V20, group D2, D20.

The equilibrium manifold consisting of symmetrical cylindrical prestressable configurations has been

computed as shown in Sultan (1999). In the (a; h) space it is represented by a curve segment whose end

points are characterized by the fact that the tensions in some of the tendons become zero. The corre-

sponding values of the independent generalized coordinates are:
dij ¼ d; where i ¼ 1; 2; 3; j ¼ 1; 2; 3;

zi2 ¼
3

2
l cosðdÞ 	 h; where i ¼ 1; 2; 3;

a11 ¼ a22 ¼ a33 ¼ a; a21 ¼ a32 ¼ a13 ¼ a þ 4p
3
; a31 ¼ a12 ¼ a23 ¼ a þ 2p

3
;

x12 ¼ 	 b
2
	 l
2
sinðdÞ cosða12Þ; y12 ¼

ffiffiffi
3

p

6
b	 l

2
sinðdÞ sinða12Þ;

x22 ¼
b
2
	 l
2
sinðdÞ cosða22Þ; y22 ¼

ffiffiffi
3

p

6
b	 l

2
sinðdÞ sinða22Þ;

x32 ¼ 	 l
2
sinðdÞ cosða32Þ; y32 ¼ 	

ffiffiffi
3

p

3
b	 l

2
sinðdÞ sinða32Þ;

/ ¼ h ¼ X ¼ Y ¼ 0; Z ¼ 3l cosðdÞ 	 2h; w ¼ 2a: ð27Þ
Here a is the azimuth of bar A11B11 and is related to d by the constraint that all nodal points lie on the

surface of a cylinder:
sinðdÞ ¼
2b sin a þ p

3

� �
ffiffiffi
3

p
l

: ð28Þ
The overlap h is obtained by solving a cubic equation in h (see Sultan, 1999, for details).

At a symmetrical cylindrical prestressable configuration there is sufficient clearance between bars and the

tensions are, as in the two stage SVD tensegrity structure case, uniquely determined up to a positive

multiplicative scalar, the pretension coefficient, P : T ðqÞ ¼ PT0 (see Sultan and Skelton, in press, for details).
It has also been numerically ascertained that all these configurations are asymptotically stable (see Sultan,

1999).

The rest-lengths, l0j , which guarantee such a prestressable configuration and a certain pretension, P , can
be computed as
l0j ¼
kjlj

T0jP þ kj
; j ¼ 1; . . . ; 33: ð29Þ
where kj is the stiffness and lj represents the length of tendon j evaluated at a symmetrical cylindrical

prestressable configuration (see Sultan and Skelton, in press, for formulas of lj, T0j in terms of a). These
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formulas characterize the symmetrical cylindrical prestressable configurations manifold control set and they

will be used for deployment.
7. Prescribed time deployment

The deployment problem consists in changing the configuration of the tensegrity tower from a sym-

metrical cylindrical prestressable configuration to another symmetrical cylindrical prestressable configu-

ration.

The previously developed deployment strategy will be applied assuming that the deployment time, Td, is
prescribed and that rest-length control is used. During deployment the rest-lengths take values in the

symmetrical cylindrical prestressable configurations manifold control set, hence they are given by Eqs. (29)
with a replaced by aeðtÞ. Here aeðtÞ is a function of time determined such that it respects the following

conditions: it is of class C1 on R, its end points values correspond to the undeployed and deployed con-

figurations respectively ðaeð0Þ ¼ au; aeðTdÞ ¼ adÞ, and it is a polynomial of the lowest possible degree. These
conditions lead to:
aeðtÞ ¼ au þ
30

T 5
d

ðad 	 auÞ
t5

30

�
	 t4

6
ðt 	 TdÞ þ

t3

3
ðt 	 TdÞ2

�
: ð30Þ
The function deðtÞ is given by the cylindrical constraint:
deðtÞ ¼ arcsin
2bffiffiffi
3

p
l

sin aeðtÞ
���

þ p
3

���
: ð31Þ
These formulas guarantee smooth transitory regimes because the controls are of class C1 on R (first order

time derivatives are continuous).

In this example we do not seek the optimization of any performance index hence the numerical solution

is very simple. The nonlinear equations of motion of the tensegrity tower (see Sultan, 1999, for details) are

numerically integrated using the time variant controls given by Eq. (29) in which a is replaced by aeðtÞ as
discussed before, and with the initial conditions given by the undeployed symmetrical cylindrical pres-

tressable configuration. The resulting numerical solution, the deployment path, is used to check (on a dense

grid) if certain conditions are met during deployment (e.g. the tendons are always in tension, the bars do

not touch, etc.). If any of these conditions is violated, then the deployment time, Td, should be increased.

The equilibrium path, defined as the state space curve parameterized by aeðtÞ, is, in this case, represented
by a segment of the equilibrium curve in the ða; hÞ space.
7.1. Numerical results

As in the two stage SVD case the tendons can be designed to an upper bound on the maximum tension

on the equilibrium manifold under consideration and the bars to an upper bound on the buckling force on

the same manifold (see Sultan and Skelton, in press, for formulas of these forces).

For the numerical example presented next, the following characteristics have been considered:
l ¼ 0:4 m; b ¼ 0:27 m; kj ¼ 1000 N; j ¼ 1; . . . ; 33; P ¼ 500; d ¼ 	3; Mt ¼ 1 kg;

J1 ¼ 3 kgm2; J2 ¼ 4 kgm2; J3 ¼ 5 kgm2; J ¼ 1 kgm2; m ¼ 0:4 kg: ð32Þ
The initial and final configurations were
au ¼ 	23�; ad ¼ 5�: ð33Þ
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The corresponding height of the structure was 0.42 and 0.67 m respectively. The deployment time has been

enforced to be Td ¼ 20 s.

Our numerical simulations indicated that the error between the deployment path and the equilibrium

path is, as in the two stage SVD tensegrity structure case, very small. The tendons are always in tension
during deployment and the clearance between bars is sufficient.

Fig. 9 shows a sequence of configurations during deployment. The time histories of the controls (the six

tendons rest-lengths S10, S0
10, V10, V20, D10, D20) are given in Fig. 10. Fig. 11 shows the time history of the

height of the structure indicating that, due to the use of C1 controls, the variation is smooth and the

structure attains the desired configuration in exactly the prescribed deployment time, Td.
A performance index can be introduced, as in the two stage SVD case, and an optimal problem can be

solved (e.g. we can determine the deployment time such that the deployment and equilibrium paths are

close enough, or such that the energy is minimized, etc.). Other generalizations might allow for the variation
of P and optimization over it (e.g. P can be allowed to vary during deployment).
Fig. 9. Deployment sequence of the tower, from left to right: initial, intermediate, and final configuration.

Fig. 10. Controls variation during deployment of the three stage tower.
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Fig. 11. Height time history of the three stage tower deployment.
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8. Conclusions

A continuous time deployment control strategy for tensegrity structures is proposed, based on the ex-
istence of an equilibrium manifold. Deployment can be conducted such that the state space deployment

trajectory is close enough to the equilibrium manifold and the structure smoothly evolves from one con-

figuration to another.

Two examples are given, one showing a time optimal deployment of a relatively simple structure, the

other the prescribed deployment time of a more complex structure. Our results indicate that the strategy can

be successfully applied, yielding very reasonable deployment times (around 12 s) to erect the first structure

from a height of 0.04–0.41 m. The second example shows that using more smooth controls, the structure can

be deployed without exciting its high frequency modes of oscillations in a prescribed, finite time.
One apparent deficiency of this procedure is that it assumes that all tendons are controlled (as opposed

to other procedures in which fewer elements are controlled). However this can be seen as an advantage

because it allows the structure to assume many other shapes (e.g. it can turn into an arbitrary shape). Our

procedure can be easily generalized to deployment or reconfiguration between very different shapes. The

apparent deficiency of having to control too many tendons can be overcome by connecting several tendons

together and using only one motor to control them.

The procedure presented herein can also be used for deployment of other structures (not only tensegrity).

It can actually be used as a method of controlling nonlinear systems between their equilibrium states using
equilibrium manifolds.
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